Mem. S.A.It. Vol. 81, 1095 © SAIt 2010

Memorie della

Low–metallicity AGB models: the H profile in the ¹³C-pocket and the effect on the *s*-process

S. Bisterzo¹ and S. Cristallo^{2,3}

¹ Dipartimento di Fisica Generale, Università di Torino, 10125 (To) Italy e-mail: bisterzo@ph.unito.it

² Departamento de Fisica Teorica y del Cosmos, Universidad de Granada, Campus de Fuentenueva, 18071 Granada, Spain

³ INAF Osservatorio Astronomico di Collurania, via M. Maggini, 64100 Teramo, Italy

Abstract. The ¹³C(α , n)¹⁶O reaction is the major neutron source in low-mass asymptotic giant branch (AGB) stars, where the main and the strong *s*-process components are synthesised. After a third dredge-up (TDU) episode, ¹³C burns radiatively, in a thin pocket which forms in the top layers of the He-intershell, by proton capture on the abundant ¹²C. Therefore, mixing of a few protons from the H-rich envelope into the He-rich region is required. However, the origin and the efficiency of this mixing episode are still matters for debate and, consequently, the formation of the ¹³C-pocket represents a significant source of uncertainty that affects AGB models. We analyse the effects on the nucleosynthesis of the s-elements caused by the variation of the hydrogen profile in the region where the ¹³C-pocket forms for an AGB model with $M = 2 M_{\odot}$ and [Fe/H] = -2.3. In particular, we concentrate on three isotopes (⁸⁹Y, ¹³⁹La and ²⁰⁸Pb), chosen as representative of the three *s*-process peaks.

Key words. Stars: C and s rich - Stars: abundances - Stars: nucleosynthesis

1. Introduction

During their thermally pulsing (TP) phase, low-mass asymptotic giant branch (AGB) stars are the site of the main and the strong component of the *s*-process, which is responsible for the nucleosynthesis of half the nuclei from Sr to Pb/Bi. After a limited number of pulses, the convective envelope penetrates into the He-intershell at the quenching of each convective instability, mixing freshly synthesized ⁴He, ¹²C and *s*-process elements to the surface (third dredge-up, TDU). The major neutron source in low-mass AGB stars is the ${}^{13}C(\alpha,n){}^{16}O$ reaction, which burns radiatively during the interpulse period in a thin region at the top of the He-intershell (${}^{13}C$ -pocket). The physical mechanism that allows the formation of the ${}^{13}C$ -pocket is debated. A small number of protons are assumed to penetrate from the envelope into the He-intershell during TDU episodes (Iben & Renzini 1982). Then, at H reignition, a large amount of ${}^{13}C$ is synthesised in the top layers of the intershell by the ${}^{12}C(p,\gamma){}^{13}N(\beta^+\nu){}^{13}C$ nuclear chain. This ${}^{13}C$ is of primary origin and, therefore, independent of the metallicity. During the interpulse, the H-burning shell ad-

Send offprint requests to: P. Bonifacio

vances in mass, compressing and heating the underlying material, and at $T \approx 0.9 \times 10^8$ K the ${}^{13}C(\alpha,n){}^{16}O$ reaction starts releasing neutrons in radiative conditions. Later on, the synthesised *s*-process nuclei are engulfed and diluted in the next convective region generated by TP.

Different evolutionary and post-processing codes have been developed in recent years to understand nucleosynthesis in low-mass AGB stars (e.g. Straniero et al. 1995, 2003; Gallino et al. 1998; Goriely & Mowlavi 2000;Karakas & Lattanzio 2003, 2007; Campbell & Lattanzio 2008; Straniero et al. 2006). Several mechanisms have been proposed to reproduce the mixing leading to the ¹³C-pocket formation. These include semi-convection, models with rotation (Langer et al. 1999; Herwig et al. 2003; Siess et al. 2004), gravity waves (Denissenkov & Tout 2003), exponential diffusive overshooting at the borders of all convective zones (Herwig et al. 1997) and opacity-induced overshooting at the base of the convective envelope (Straniero et al. 2006). A clear answer to the properties of such mixing has not been reached yet.

We test here the effects on the nucleosynthesis of the *s* elements by adopting different H profiles in the region of the ¹³C-pocket forming after the first TDU of an AGB model with initially $M = 2 M_{\odot}$ and [Fe/H] = -2.3. Comparison between the full evolutionary FRANEC (Frascati Raphson-Newton Evolutionary Code) models (Cristallo et al. 2009, hereinafter C09) and FRANEC models coupled with a post-processing nucleosynthesis method (Gallino et al. 1998; Bisterzo et al. 2010) are presented.

2. Results

C09 introduce a mixing algorithm which depends on a free parameter¹ in their full evolutionary models to mimic the formation of a transition zone between the fully convective envelope and the radiatively stable H-exhausted core. Thus, a partial mixing of protons takes place and leads to the formation of

a ¹³C rich layer. Its mass and profile decrease with the number of pulses (see C09, their figs 4 and 8).

Fig. 1, top panel, shows this region. In the uppermost layers of the pocket, where protons are more abundant, the ¹³C-pocket overlaps with a ¹⁴N-pocket, which forms via the ${}^{13}C(p,\gamma){}^{14}N$ reaction. ${}^{14}N$ acts as a neutron poison via the resonant reaction ${}^{14}N(n,p){}^{14}C$. Thus by subtracting neutrons from the nucleosynthesis of the s-process elements. Fig. 1, bottom panel, shows the same mass region at the end of the ¹³C burning. We concentrate on three isotopes, ⁸⁹Y, ¹³⁹La and ²⁰⁸Pb, chosen as representative of the three *s*-process peaks. As expected, at this low metallicity, a large amount of ²⁰⁸Pb is produced (Gallino et al. 1998). Maximum Pb production occurs in the central layers of the pocket where $X(^{13}C) >$ $X(^{14}N)$ (we find $X(^{208}Pb) = 4.5 \times 10^{-5}$), while Y and La show definitely lower abundances: $X(^{89}\text{Y}) \approx X(^{139}\text{La}) \approx 6 \times 10^{-9}$. In the outer and inner regions of the pocket, however, 89Y and ¹³⁹La show peaked distributions. Note that, in the outer tail, s-process elements are efficiently synthesised even if $X(^{13}C) < X(^{14}N)$.

In order to test the effect of these tails on Y. La and Pb with different H profiles, we use the post-processing nucleosynthesis models described by Bisterzo et al. (2010). We adopt the H profile of Gallino et al. (1998, case ST, their fig. 2). Then we introduce a further region in the pocket (with mass M = $4 \times 10^{-4} M_{\odot}$) in which we change the abundances of ¹³C and ¹⁴N to simulate different H profiles in the tails. We multiply or divide by different factors the ¹³C and ¹⁴N abundances in the pocket². Note that the H profile and the mass of the pocket are kept constant pulse by pulse. The envelope abundances of the two sprocess indices [La/Y] and [Pb/La] obtained with the post-processing method are shown in Tables 1 and 2. In Table 1, first group, we show the results computed with standard ¹³Cpockets (with three zones as Gallino et al. 1998) for various ¹³C-pocket efficiencies (from

¹ See C09 for the procedure followed to calibrate it.

² In fact a range of 13 C-pockets is introduced in order to interpret the spread in the *s*-elements observed in CEMP-*s* stars.

Fig. 1. ¹³C-pocket mass region for a full evolutionary AGB model of $M = 2 M_{\odot}$ and [Fe/H] = -2.3 (C09) after the first TDU, at the pocket formation (top panel) and at the end of the ¹³C burning (*bottom panel*).

 $ST \times 2$ down to ST/24). These results are compared with models with an added fourth zone with $X(^{13}C) < X(^{14}N)$ (Table 1, second group). This has been done to simulate the effect induced by the outer tail of the pocket shown in Fig. 1 by C09 model on post-processing calculation results. C09 obtain a final [La/Y] = 0.45and [Pb/La] = 1.30. With the post-processing method and a range of standard ¹³C-pockets, [La/Y] reaches a maximum value of about 0.9 (case ST/6) and [Pb/La] ≈ 2.2 (case ST/1.5). When adding the fourth zone, minimal variations are found for large and low ¹³C-pocket efficiencies, while appreciable differences are found in the intermediate cases. For large ¹³C abundances (case ST×2), the addition of fourth zone leads to a large production of light elements (Ne, Na and Mg) whose poisoning effect induces a slightly decrease in the final s-

process element surface overabundances. For very low ¹³C efficiencies the s-process production is mainly due to the ${}^{22}Ne(\alpha, n){}^{25}Mg$ reaction (Bisterzo et al. 2010). This minimizes the effects of additional ¹³C and¹⁴N. For intermediate cases the introduction of the fourth zone instead reduces the maximum [La/Y] to about 0.5 dex and the maximum [Pb/La] to about 1.6,dex. In Table 2 we select the highest ¹³C-pocket case (case ST \times 2) and we test the effect of an added fourth zone with different $X(^{13}C)$ values (assuming $X(^{14}N)$ is negligible). We choose the $ST \times 2$ case because previous comparisons done at larger metallicities (C09) indicate that the best agreement between post-processed and full evolutionary models is found with this case. The standard case with three zones only (column II) gives [La/Y] =0.50 and [Pb/La] = 2.04, while the addition of a fourth zone with $X(^{13}C) = 3.8 \times 10^{-4}$ (test III) definitely lowers the [Pb/La] ratio (to 1.47) leaving practically untouched the [La/Y] ratio (at 0.56). Thus, a reasonable agreement between this test and C09 is found even at such low metallicities. After verifying that the tails of the ¹³C-pocket affect the *s* distribution, one may constrain the choice of the H profile through a study of spectroscopic observations in CEMP-s stars. Note that, for disc metallicities, the tails of the pocket do not influence the s distribution noticeably.

3. Conclusions

The maximum amount of ¹³C and ¹⁴N in the pocket and different hydrogen profiles (and therefore the amount of ¹³C and ¹⁴N in the tails of the pocket) modify the s abundance distribution. In particular, the s-process indices [La/Y] and [Pb/La] are sensitive to the tails of the pocket. At [Fe/H] = -2.3 a large amount of ²⁰⁸Pb is produced when $X(^{13}C) > X(^{14}N)$. A first interesting consequence caused by the addition of an outer tail in the pocket with $X(^{13}C) < X(^{14}N)$ is that the maximum [La/Y] value attained with different ¹³C-efficiencies is reduced to about 0.5. Moreover, with a calibrated extra $X(^{13}C)$ in the tails of the pocket, the maximum [Pb/La] is reduced to 1.4 dex. Comparison between theory and observations

Table 1. Envelope abundances of [Y/Fe], [La/Fe], [Pb/Fe] and their ratios, [La/Y] and [Pb/La], for a post-processing model of $M = 2 M_{\odot}$ and [Fe/H] = -2.3 and various ¹³C-pocket efficiencies (from ST × 2 down to ST/24). The first group lists the results obtained with the standard ¹³C-pocket, while in the second group a further fourth zone with $X(^{13}C) < X(^{14}N)$ is added.

Cases		$ST \times 2$	ST	ST/1.5	ST/2	ST/6	ST/12	ST/24
	[Y/Fe]	1.68	1.39	1.33	1.35	1.98	2.35	2.45
	[La/Fe]	2.18	1.88	1.92	2.10	2.85	2.94	2.71
	[Pb/Fe]	4.22	4.12	4.09	4.06	3.82	3.44	2.69
	[La/Y]	0.50	0.49	0.59	0.75	0.87	0.59	0.26
	[Pb/La]	2.04	2.24	2.17	1.96	0.97	0.50	-0.02
	$X(^{13}C) = X(^{14}N) =$	7.2E-2 2.7E-1	3.7E-2 1.4E-1	2.5E-2 9.3E-2	1.9E-2 7.1E-2	6.2E-3 2.3E-2	3.1E-3 1.2E-2	1.6E-3 5.8E-3
zone 4 $X(^{13}C) < X(^{14}N)$	[Y/Fe] [La/Fe] [Pb/Fe] [La/Y] [Pb/La]	1.58 2.10 4.04 0.52 1.94	1.75 2.25 4.02 0.50 1.77	1.89 2.42 3.99 0.53 1.57	2.00 2.54 3.97 0.54 1.43	2.40 2.92 3.76 0.52 0.84	2.58 2.97 3.43 0.39 0.46	2.64 2.80 2.84 0.16 0.04

Table 2. The same as Table 1, but for a case ST \times 2 and an added fourth zone with different $X(^{13}C)$ values, from 0 (standard case) up to 4.3×10^{-3} . $X(^{14}N)$ is assumed to be negligible. In the last column the results obtained by C09 are listed.

zone 4,	standard	I test	II test	III test	IV test	V test	VI test	VII test	C09
$X(^{13}C)$	0.0	2.9E-4	3.5E-4	3.8E-4	4.8E-4	5.8E-4	1.2E-3	4.3E-3	
[Y/Fe]	1.68	2.23	2.21	2.19	2.09	1.97	1.74	1.75	1.12
[La/Fe]	2.18	2.60	2.65	2.75	2.80	2.76	2.48	2.27	1.57
[Pb/Fe]	4.22	4.21	4.23	4.22	4.23	4.24	4.29	4.33	2.88
[La/Y]	0.50	0.37	0.44	0.56	0.71	0.79	0.74	0.52	0.45
[Pb/La]	2.04	1.61	1.58	1.47	1.43	1.48	1.81	2.06	1.30

in CEMP-*s* stars is then needed in order to constrain the choice of the H profile in the central and outer regions of the ¹³C-pocket during AGB nucleosynthesis.

Acknowledgements. We are grateful to Roberto Gallino for helpful comments and discussions.

References

- Bisterzo, S., Gallino, R., Straniero, O., Cristallo, S., Käppeler, F. 2010, MNRAS, 404, 1529
- Campbell, S. W., & Lattanzio, J. C. 2008, A&A, 490, 769

- Cristallo, S., Straniero, O., Gallino, R., et al. 2009, ApJ, 696, 797 [C09]
- Denissenkov, P. A., & Tout, C. A. 2003, MNRAS, 340, 722
- Gallino, R., Arlandini, C., Busso, M., et al. 1998, ApJ, 497, 388
- Goriely, S., & Mowlavi, N. 2000, A&A, 362, 599
- Herwig, F., Blöcker, T., Schönberner, D., El Eid, M. 1997, A&A, 324, L81
- Herwig, F., Langer, N., Lugaro, M. 2003, ApJ, 593, 1056
- Karakas, A., & Lattanzio, J. 2003, PASA, 20, 279

- Karakas, A., & Lattanzio, J. 2007, PASA, 24, 103
- Iben, I. Jr., & Renzini, A. 1982, ApJ, 259, L79 Langer, N., Heger, A., Wellstein, S., Herwig, F. 1999, A&A, 346, L37
- Siess, L., Goriely, S., & Langer, N. 2004, A&A, 415, 1089
- Straniero, O., Gallino, R., Busso, M., et al. 1995, ApJ, 440, 85
- Straniero, O., Domínguez, I., Cristallo, S., Gallino, R. 2003, PASA, 20, 389.
- Straniero, O., Gallino, R, & Cristallo, S. 2006, Nucl. Phys. A, 777, 311